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COUETTE GAS FLOW FOR A CONFIGURATION WITH SIDE WALLS* 

V.P. SHIDLOVSKII 

In the dynamics of a viscous compressible fluid an exact solution of the 
Navier-Stokes equations is known (see e.g. /l/) in the case of steady 
flow between two unbounded parallel planes moving with different velocities 
and, generally at different tempertures (Couette flow). It will be shown 
that an exact solution can also be constructed in the case when the 
boundary surfaces, while extending without limit in the direction of 
motion, are bounded in the transverse direction, i.e. have side walls. 

1. A viscous heat conducting gas whose specific heats and the Prandtl number are constant 
and whose dynamic viscosity p depends uniquely on temperature, is used as a model of the 
medium in question. The gas fills all space and is in a state of steady motion due to the 
presence of an impermeable half-plane moving in a direction parallel to its side wall with 
constant velocity U. A second, stationary half-plane is situated at a distance h above this 
half-plane and is parallel to it. We shall indicate, without specifying the form of the 
temperature boundary conditions, that the temperature of one of the boundary half-planes will 
be assumed constant and equal to T,. We wish to determine, under these conditions, the 
stationary distribution of the hydrodynamic parameters and temperature over the whole space. 

The classical version of the Couette problem enables 
us to consider the flow inside the gap, irrespective of 
what happens outside the gap. With the side walls, the 
inner region is a part of the infinite space brought into 
motion, and the solution naturally depends on the form of 
the "external" boundary surfaces. This means that the 
model of the boundary geometry must be supplemented and 
made more specific. Below we shall consider two versions 
of the specification of the external boundaries. 

Let us choose the Cartesian coordinate system in such 
a manner (Fig.1) that the x axis is directed towards the 
motion along the sideof thelowerboundaryhalf-plane, the y 
axis upwards alongthenormal to both half-planes, and the 
z axis lies in the plane of the lower boundary. 

Fig.1 The Navier-Stokes equations for the steady gas flow 
will be written in dimensionless form, using h as the 
scale of length, with U, T, and b= r(T,) as the 

velocity, temperature and viscosity scales respectively, We shall assume that the projection 

of the velocity u on the x axis is the only non-zero velocity component in the whole region 

of flow. Clearly, the variables sought can only depend on y and z, and two projections of 
the vector equation of moments implies the constancy of pressure over the whole region of flow. 
The third projection of the momentum and energy equation take the form 

(1.1) 

(1.2) 

where x is the ratio of the specific heats and I4 is the Mach number. The system is closed 

by the equation connecting the viscosity with the temperature 

p = p(T) (1.3) 

It can be directly confirmed that Eq.cl.2) is satisfied by the relation 

T = -pr (x - 1) M%&? 7 c,u -t- c? (1.4) 

containing two arbitrary constants. In what follows, we shall only consider the versions of 

the temperature boundary conditions which allow the use of the integral of (1.4). 
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Using relations 

The solution of 

(1.3) and (1.4)) we introduce a new function 

F(u)=jllIT(u)ldu/5r[T(u)ldu (1.5) 

0 0 

the problem in toto isnowreducedtodeterminingthe function F (v> s), _ 
satisfying a two-dimensional Laplace equation obtained from (1.1). If the function F (Y, 2) 
is found, then inverting expression (1.5) yields the relation u(y,z), and the integral of 

(1.1) will then enbable us to find T(y, 2). The possibility of analytic inversion of function 

(1.5) does not seem to be absolutely necessary. 

2. AS ae first version of the geometrical model in question we shall consider the case 
when the boundary surfaces are lengthwise Semi-infinite, infinitely thin plates. Then the 

boundary condition will take the form 

F (0, z > 0) = 1, F (1, z > 0) = 0, F (y, m) = 1 - y (2.1) 

The natural route for solving a boundary value problem for the LaplaCe equation with 
conditions (2.1) involves a conformal transformation of the plane of the Complex Variable 

X = z + iy. In the present case by introducing the notation A = E + iq, we can conveniently 
use the transformation 

X = :I - (2n)-%-aA + C. C = --(2x)-' + ii2 (2.2) 

where the constant c is chosen from the condition that the origin of coordinates is situated 
in the x plane at the edge of the moving surface. As a result, the whole of the X plane will 
map into the interior of a strip in the A plane contained between the straight lines 1) = - 

1;) and 7, ='!*. The semistraight line 9 = -l/s, E> 0 serves as a mapping of the inner 

surface of the moving plate, and the semistraight line IJ = -1/2,~< 0 corresponds to its outer 

surface. Similarly, the line 11 = 1/Z maps -both surfaces of the stationary plate. 
Separating the real and imaginary part in Eq.(2.2) we obtain 

z = 5 -(2n)-' (1 f e-% cos 2nn) 

y = 11 + 1!2 + (2n)-'e-?"E sin 2~7) 

(2.3) 

Changing to the (5,11) coordinates the function F(j,q) satisfies, as before, the Laplace 
equation, and the boundary conditions take the form 

F (5, -V2) = 1, F (E, V2) = 0, F (00, q) = VP - 11 (2.4) 

A unique solution of such a boundary value problem is given by the expression 

F = 'I2 - q (2.5) 

therefore the isolines F = const in the physical plane coorespond to the lines 9, = const 
obtained using (2.3). Fig.2 shows the form of these isolines. We see that in spite of the 
dissipation caused by the motion of the plate the perturbations decay only in the direction 
of the y axis, while in the negative direction of the z axis they depart into the outer region 
at an infinite distance. 

It is interesting to note that, as is apparent from Eqs.(2.3) and the distribution of 
the isolines in Fig.2, the flow within the inner region (z> 0, 0< y< l)becomes, already for 
the values z = O(l), practically indistinguishable from the flow appearing in the classical 
one-dimensional problem without side walls. 

3. Next we shall consider the second version of the geometry of the problem. In this 
version the upper boundary surface remains the same as in the first version, i.e. it represents 
an infinitely thin plane occupying the half-plane y = 1.~20. The lower boundary is assumed 
to consist of two impermeable half-planes # = O,Z> 0 and z = O,y,(O forming a two-sided 
right angle. Although this geometry is more complicated than that of the first version, it 
offers a better model of a real configuration and corresponds, in particular, approximately, 
to the flow between two coaxial cylinders where the inner cylinder has an impermeable end 
face and its radius is much greater than the gap h. 

The transverse section ofthe configuration described can be regarded as a polygon whose 
interior maps conformally onto the upper half-plane by a Schwartz-Christoffel transformation 
/2/. Let the point E = -1, on the axis E in the plane A correspond to the origin of 
coordinates in the X plane, the point E'= a, to the upper edge of the boundary, and the point 
E=O to the region O<Y<~,Z+OD. Taking into account the magnitudes of the corresponding 
angles and using the Schwartz-Christoffel formula, we obtain 

dXldA = Ca(A - a) A-']/,\ +1 
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The constants CS and C, are found from the conditions of geometrical correspondence 
(an)-1, c, - i. 

c, = 
However, when a is chosen arbitrarily , the edge of the upper boundary surface 

does not come to the z axis. For this Is happen, d must be a positive root of the trans- 
cendental equation f(a) = 0, consequently we have a zz 1.5750. 

Taking into account the choice of the constants and separating the formula (3.1) into 
its real and imaginary part, we obtain 

It remains to 
following boundary 

find the harmonic function Ffg,q) in the upper half-plane with the 
conditions: 

F (E < 0, 0) = 1, F(E>O,Oj ==u 
Using the Fourier integral, we can obtain the sol.ution of this problem in closed form 

F = i12 - xml arctg (&%Q 13.31 

Expression (3.3) yields, in agreement with (3.21, the parametric representation cf the 
relation F (y,z). The corresponding isolines are shown in Fig.3. Their qualitative behaviour 
resembles that of the isolines in the first version @ig.2), although noticeable difference 
connected with the geometrical asymmetry appear in the outer region. 

Fig.2 Fig.3 

The analysis carried out here can, in principle, be extended to the case when the 
boundary surfaces are of finite length in the z direction. The literature dealing with 
conformal transformations (e.g. /3, 4/) shows possible ways of transforming the configurations 
with such baundaries into a relatively simple region such as e.g. the upper half-plane. The 

corresponding solutions of Eq.(l.6) depend normally on the additional parameter h ="@ (L 
is the characteristic dimension of the configuration in the z direction) and dan serve as a 
source of basically new information, provided only that li < 0 (3). 

We stress that the exact solution of the Navier-Stokes equations were constructed above 
for a compressible fluid with a minimum number of restrictions. Having available t.he specific 

information concerning the thermal boundary conditions, the laws connecting the viscosity with 

temperature, the ratio of specific heats I and the Prandtl and Mach numbers, we can find the 
required friction or heat transfer charactesfstics forthe versions of the viscous heat con- 
ducting gas discussed above. 
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AN ELECTROHYDRODYNAMIC METHOD OF RETARDING THE 
TRANSITIONOFA BOUNDARY LAYER* 

A.P. KURYACHII 

The possibility of a downstream displacement of the point of transition 
of a laminar bonndary layer to the turbulent mode, as a result of electro- 
hydrodynamic (EHD) action on the boundary layer flow is considered. A 
method based on using the electrostatic volume forces appearing when a 
charged medium flows in an electric field, may turn out to be one of the 
novel, effective and economic methods of controlling the boundary layer 

/l/. The assessment of the result of EHD action on the position of the 
transition point is obtained below using the results of a calculation 
of the spatial amplification factors of small perturbations of the 
Tomlin-Schlichting wave type in the EHD boundary layer, and the &method 
of predicting the transition /2/. 

1. Consider the flow of a viscous incompressible fluid past a semi-infinite dielectric 
plate with relative permittivity h, with the flow velocity denoted by u_. The coordinate 
system chosen has its origin at the leading edge of the plate , the x axis is directed along 
the surface parallel to the flow velocity vector, and the y axis is perpendicular to the 
surface. It is assumed that semi-infinite grid electrodes p1 and pa, not affecting 
the gas flow (Fig.l), are erected on the plane perpendicularly to the direction of the on- 
coming flow. The distance between the electrodes is 1, and their dimensionless coordinates 
are z1 and x2. The earthed electrode p2 is an ion collector, and the emitter electrode pl 
simulates the unipolar charge sources situated upstream /3/. An electrode rs, modelling 
the electrode used to impart a definite form to the ionic flow is placed inside the plate, 
parallel to its surface, at a distance y, between r1 and pr. 

It is assumed that +<O (I), so that the Reynolds number determined over the length 1 
is characteristic for the boundary layer between the electrodes. 

The system of electrogasdynamic equations describing the steady flow of a viscous incom- 
pressible gas with unipolar charge, has the following form in dimensionless coordinates /3, 4/: 

Vr:E=O, VE=q 

Here $ is the hydrodynamic stream function, E = (E,,E,) is the electric field vector, 
q is the volume charge density, Re= u,llv is the Reynolds number, a =Ee-'is, %= v/D is the 
ratio of the kinematic viscosity of the gas to the ion diffusion coefficient, il' z @(@I*) is 
the EHD interaction parameter, p and e0 are the density and absolute permittivity and b 
is the ionic mobility. 

If we use a corona discharge as a source of unipolar charge, then J,-1 151, N wIO-~ 131. 
In this case we can write, for the values of the Reynolds number ranging from 186 to l(j:, 
N = ke, where k = 0 (1). 

The set of equations (l.l), (1.2) can be solved using the following boundary conditions. 
For the stream function we have the conditions of adhesion to the plate surface and a uniform 
stream at infinity. The electrical parameters in the interelectrode region are found by 
Specifying, on the latter, the electric potential distribution. We speeify on the emitter 
the initial volume charge density distribution. As y -00, the component E, of the 
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